Skip to main content
Version: 7.2

Production Deployment

The Ed-Fi ODS / API supports a wide variety of deployment models for a production environment, including on-premises and cloud-based deployments, virtualized deployments, load-balanced deployments, and so on.

This section of the documentation covers the key concepts API platform hosts should understand before deploying to a production environment, along with details about specific configurations.

Production System Components

There are several websites and databases that work together to provide primary and supporting functions for a Production instance:

  • Websites
    • Ed-Fi ODS API. The REST endpoint for client applications.
    • Admin App Website. This website provides administrative tools for managing API client keys and secrets.
  • Databases
    • EdFi_ODS.*. A database that stores data for the Ed-Fi ODS / API.
    • EdFi_Admin. A database containing authentication information for API clients.
    • EdFi_Security. A database containing authorization information for API clients.

Of particular note: production deployments should not include the Swagger Documentation UI, Sandbox Administration UI, or the EdFi_ODS_* databases. Those components are included by default in the code distribution — and are appropriate for a Sandbox instance of the ODS / API — but should not be deployed to production.

Configuration

Beyond changes to database connection strings, the Ed-Fi ODS / API is configurable using application feature flags.

API provides feature on/off flags for several built in features. Also the system can be extended by creating a feature service and registering the service by creating an Autofac module class that inherits from ConditionalModule class. See Adding Custom ODS / API Features for more information on customizing the application.

Changes to the processing pipelines, caching mechanisms, data repository, and many other considerations can be adapted by changing the corresponding Autofac modules called from the Startup class when the website is loaded.

Planning for a Secure Production Deployment

The security of student information is a primary concern of any API platform host. This section outlines considerations for platform hosts when planning Ed-Fi ODS / API deployments.

The information in this section can be used as a checklist or as input into a threat modeling exercise during the deployment planning cycle.

Important Security Information

The technical article Education Agency Business Process Security Considerations contains important background information that all implementers should know before deploying a production instance of the Ed-Fi ODS / API.

Value Assets

A list of high-value assets and a brief description of each follow:

AssetDescription
Ed-Fi Operational Data StoreThe operational data store contains student, parent, and staff personally identifiable information data, along with potentially sensitive financial information (e.g., employee payroll, budgets).
Ed-Fi Administration Data StoreThe Admin data store contains sensitive information such as the API key/secret pairs used to validate OAuth authentication requests.
Ed-Fi Web ServicesPlatform hosts and end users expect the Ed-Fi ODS / API to be reliable. Outages can cause serious operational problems for hosts.
Personally Identifiable InformationInformation such as student names, demographic information, academic performance, and disciplinary records can be valuable to attackers — and disclosure of this information is regulated by laws such as the Family Educational Rights and Privacy Act (FERPA).
OAuth CredentialsREST client application systems authenticate to the Ed-Fi ODS / API using a key/secret pair. Once the key and secret are generated, it’s the responsibility of the client application system owner to guard the values. Should an attacker gain access to these credentials, they can attempt to establish their own connection to the API.

Security Recommendations for Production Deployments

The following are recommendations and precautions for implementers to consider when planning a production deployment.

An obvious disclaimer applies: these are just general guidelines offered in summary form. Platform hosts should include trained security professionals in their deployment planning and conduct security audits prior to deployment and periodically thereafter.

Recommendations for the API

  • Ensure that only intended client applications can interact with the Ed-Fi ODS / API.
  • Implement a process for client application owners to refresh their key/secret pair.
  • Verify the IP address of incoming requests.
  • Ensure client applications have the least-privileged access to the database.
  • Encrypt connection strings in configuration files.
  • Throttle or limit the rate of incoming requests to prevent denial of service attacks.
  • Encrypt sensitive data, including database storage.
  • Ensure the OAuth secret is hashed in the database.
  • Allow only HTTPS connections.
  • Set "Persist Security Info" to false in the database connection string.
  • Ensure the ODS database does not accept external connections.

Recommendations for the Ed-Fi Sandbox Administration Portal

  • Do not deploy the Sandbox Administration Portal to a Production instance.
  • Ensure any Sandbox development tools and configurations are not included in Production.
  • Remove the Swagger documentation pages from Production instances.

Admin App

  • Encrypt sensitive data.
  • Ensure the OAuth secret is hashed in the database.
  • Only allow HTTPS.
  • Configuration should explicitly only allow administrator access.

Reference Models for Production Deployment

The following sections provide a number of archetypical deployment models. These reference models are not intended to be a complete prescription for any given installation, but rather a starting point to weigh options and plan a deployment that serves your organization’s needs.

On-Premises, Two-Server Deployment Model

Very small deployments (up to about 7,500 students) can function on a simple, two-server model. One server hosts the API application and the other hosts the SQL Server platform and the ODS data store.

This configuration is excellent for small organizations because it is inexpensive, easy to maintain, and leverages common technologies that are usually supportable by in-house staff. It allows the database server to remain in the internal network while the web server is placed in the DMZ. When properly configured, this approach ensures that even in the event that a server in the DMZ is compromised, the student data would remain secure. This model may also be used for a cloud-based or hybrid deployment.

Load-Balanced Deployment Model

A load-balanced deployment, whether on-site or in the cloud, includes an HTTP Load Balancer that analyzes and routes incoming network traffic, multiple web servers, an external cache, and mirrored database servers. In this example, a basic load balancing scenario is described; more extreme examples of fault tolerance such as geographic redundancy are possible, but beyond the scope of this document.

The load balancer does exactly what its name implies: routing incoming requests as efficiently as possible to individual web servers, providing additional capacity as well as redundancy.

Mirrored database servers do not provide any performance or scalability improvements, but they do provide redundancy.

Multiple web servers with identical configurations are deployed and registered with the load balancer. Database configurations and connection strings are altered to implement always on availability groups.

Several entity types (including Ed-Fi Descriptors) are cached in the web API. It is possible for these caches to get out of sync if they are local to each web server. In a load-balanced configuration, an external cache should be used.

Cloud-Based Deployment Models

Documentation and scripts for deployment of an Ed-Fi ODS / API instance in Microsoft Azure and Amazon Web Services can be found in the Ed-Fi Exchange. To locate these, navigate to https://exchange.ed-fi.org and browse to the following entries:

  • Ed-Fi ODS/API on AWS
  • Ed-Fi ODS/API Deploy Tools for Azure
warning

These scripts in the Ed-Fi Exchange may have been developed for older versions of the Ed-Fi ODS/API, and therefore may need modification to work with this version.

Scale and Reliability Techniques for Production Deployment

Production deployments have complex techniques to achieve particular requirements for scale, security, uptime, and so forth. This section outlines a few common technologies and their applicability in an Ed-Fi ODS / API deployment.

Load Balancers

The Ed-Fi ODS / API is built to be part of a load-balanced solution. The API does not use server state information, so multiple ODS / API physical servers may be installed as part of a cloud-based or on-premises load-balanced solution. The Ed-Fi ODS / API does cache frequently used data, so a distributed cache solution must be used in a load-balanced deployment.

Domain Controllers

As members of a domain, the servers may be configured to use domain service accounts for database authentication. This is the preferred configuration over SQL authentication, as it is more secure.

Continuous Integration

An automated build and continuous integration environment is a great benefit in all but the most trivial uses of the Ed-Fi ODS / API. The Ed-Fi ODS / API uses code generation techniques to incorporate extensions directly into the core of the compiled code. As a result, the libraries, database structure, API, SDK, and other artifacts are an atomic package that may not operate properly if their components are out of sync.

The Ed-Fi ODS / API also has an extensive set of unit and integration tests. These tests can take up to an hour to run.

An automated build and deploy process minimizes the chances that an unknown dependency gets injected into the code-base unintentionally, and ensures that no process step is omitted when deploying.

CPU, Memory, and SSD RAID Drives

The Ed-Fi ODS / API is a CPU- and memory-intensive solution, especially when performing bulk load operations. Using a 64-bit operating system, installing a sufficient amount of memory (recommended is at least 16 GB of RAM), and a server-quality CPU with several cores will maximize the performance of the web server.

Using the fastest drives available on production servers is always a good idea. With the rise of solid state disk technology in terms of improved reliability, faster data access, and improvements in capacity, it is advantageous to consider these drives over more traditional RAID spindle drives. A single SSD drive can outperform an array of spindle drives. The guiding principle of redundancy has not been repealed, however, so it is still prudent to use redundant drives for critical system components.

The Ed-Fi ODS web servers should use solid state drives where possible. Microsoft Windows and IIS perform much better when SSDs are used. From a performance perspective, it is not necessary to have a separate data drive containing the Ed-Fi ODS / API website. It is relatively small. The website may be easily installed in the C:\inetpub directory.

System drives should be the first drives on the database server upgraded to use solid state drives, followed by data drives. Where budget allows, the data drives may also be upgraded for a smaller (relative) performance improvement.

Data Segmentation

The data stored in the ODS database can be segmented into multiple ODS databases in various ways. The simplest strategy is to deploy ODS databases according to a logical distinguishing characteristic of the data to be stored (e.g. by year, by district, by API client, etc.) and associate each API client with a single ODS (implicit segmentation). An alternative would be to configure additional context in the API request path that is required from API clients and define corresponding ODS context values to allow the API to select the appropriate ODS database for each request (explicit segmentation). More detail can be found in the Database Segmentation Strategy section of Platform Dev Guide - Extensibility & Customization.

Environmental Considerations

Every production deployment has its own environmental considerations that are unique. The following items, while not unique to the Ed-Fi ODS / API, should be considered when planning for a production deployment.

Windows Domain and Service Accounts

In any non-trivial deployment (more than a few servers), it is recommended that the IIS Servers be members of a DMZ domain. One of the key benefits of having a DMZ domain is that domain service accounts can be used for all credentials between services in the domain. Windows Authentication is more secure, and less brittle than storing usernames and passwords using clear text or encrypted configuration files.

IIS Load Balancing

Multiple IIS servers are needed for load balancing and horizontal scaling. Provisioning multiple servers should be performed in conjunction with automated deployment scripts to minimize the potential for differences in configuration.

Microsoft SQL Server

It is highly recommended that Windows Authentication be used instead of SQL authentication, and that SQL Server authentication be disabled in SQL Server. Running each IIS application domain as a windows service account, and providing the appropriate permissions to those service accounts in SQL server allows the connection strings to contain no usernames or passwords. It is recommended that SQL Servers be mirrored and that connection strings settings include failover settings. Best practice always includes good database backup policies.

Pre-Deployment Development Tasks

The ODS / API is designed to be customized. That being the case, the as-shipped configuration of the Ed-Fi ODS is suitable for a developer machine and sandbox deployment, not a production deployment. For example, the solution ships with developer-friendly implementations that demonstrate basic functionality but may not represent functionality required for a specific installation.

Also, the Ed-Fi ODS / API is built on the Ed-Fi Data Standard, which is made to be extended. Schema extensions often include individual attributes as well as the addition of completely new entities that may be created to provide solution-specific information. A common scenario includes state education agency platform hosts that extend the data model to include information related to mandatory data collections.

Configuration considerations that your organization should evaluate include:

  • An approach to Unique IDs
  • Client key/secret generation and distribution scenarios
  • Use of database-per-year ODS databases
  • Use of per-district ODS databases

These items represent the key areas where the as-shipped components of the ODS / API must be configured for production use. A discussion of each consideration follows.

Unique Identity Systems

Because the concept of person identity is closely related to student data, the Ed-Fi ODS / API includes a common interface for accessing a unique identity system. This API provides a common minimalistic interface that may be backed by an identity system of choice. Where tighter integration with a unique identity system is desired (such as validating identity information during data updates), the POST/PUT pipeline should be extended to call the identity system.

Client Key / Secret Distribution

Key and secret pairs are used as authorization credentials for Ed-Fi ODS / API client applications. Secure generation and distribution of these keys and secrets should receive proper attention when planning a deployment of the Ed-Fi ODS / API.

Conclusion

Every organization has its own requirements and resources so no two deployments will be exactly alike. This document has outlined several technical options, but when evaluating your options, you should, of course, remember to take into account factors like cost, support expertise in your organization, security and privacy requirements, and so on.